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This paper considers the two-dimensional problem of a plane vortex sheet disturbed by an
impulsive line source. A previous incorrect treatment of this problem is examined in detail.
Instabilities of the vortex sheet are triggered by the source and grow exponentially in space
and time. The Green function is constructed for the problem and it is shown that a point
source properly positioned and delayed will induce a "eld that cancels the unstable growing
modes. The resulting displacement of the vortex sheet is expressed in simple terms. The
instabilities are checked by the anti-source which combines with the "eld of the primary
source into a vortex sheet response which decays with time at large time. This paper is
a contribution to the study of active control of shear layer instabilities, the main
contribution being to clear up a previous paper with peculiar results that are, in fact, wrong.

( 2001 Academic Press
1. INTRODUCTION

Of course, I accepted the editorial invitation to help celebrate Phil Doak's 80th birthday by
contributing a paper in this special issue of the Journal, which has grown from a gleam in
Elfyn Richards' eye in the early 1960s to mature into the most authoritative archival
publication it is today, largely due to Phil Doak's vision, great care, and hard work. There
were times when Phil and I shared di!erent views on the merits of papers submitted
to the young journal. Mistakes are bound to be made and in serious analytical texts
they are sometimes hard to "nd. They are particularly hard to "nd by referees
assessing papers too casually. The arguments are often subtle and very complicated.
I thought I would contribute to this issue a discourse on what must be mistake in one of my
papers. The evidence for there being a mistake had grown strong enough by the time
I received the invitation to write that I was happy to spend time in sorting it out; I could not
imagine it would be a hard job at all. Since then I am taxing the editorial nerve by delaying
submission of the paper until the very last moment, because I am still not sure of the correct
answer.

The e!ort to really understand how sound interacted with the mean #ow of a jet had led
some 30 years ago to several initial value problems being posed, sound interacting the
vortex sheet being the simplest example. Analyses of these problems inevitably involve the
use of generalized functions and distributions and Fourier transforms. The Wiener}Hopf
problem raised issues of causality. D. S. Jones and his group in Dundee were amongst the
pioneers, their analyses appearing regularly in journals respected more for the rigour of the
approach than for their recognizable modelling of physical problems. A paper [1] by Jones
and Morgan that appeared in 1972 was characteristically elegant, di$cult to read, and
mysterious. It considered the Green function, the "eld induced by an impulsive point source
adjacent to a vortex sheet. Of course, there was no e!ect of the sheet until sound had arrived
at it, but on arrival, the sound triggered o! a response of the sheet that travelled and grew
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and made waves whose strength grew exponentially in time. Many of those interested in the
physics of sound interacting with vortex layers, whilst appreciating many of the predicted
e!ects, were inclined to discount the signi"cance of the exponentially growing instability
waves. But they could not be avoided and became more and more di$cult to understand
the more one sought their physical explanation. One of the strangest aspects was that the
solution to the problem was perfectly well behaved and modelled by generalized functions
but only so till a precise time had elapsed since their activation. Then on the shear layer, at
a distance downstream of the source equal to the source's elevation above the layer, after
a time equal to that taken by instability waves to travel that distance, the solution changed
in character, becoming very much more complex with its modelling not contained in the
space of generalized functions. Something more elegant or abstract or erudite, certainly,
more complicated, was needed to go further. Jones and Morgan [1] introduced a set of
ultra-distributions and showed it to be the proper description of waves beyond this critical
time. Not one of my close colleagues had much clue about what ultra-distributions were, or
why they were needed, nor about the physics of what was really going on. They attracted
a great deal of our attention. In particular, after a meeting in Stanford in 1980 C. C. Chao,
David Crighton and I were speculating on what the ultra-distribution could possibly be,
and C. C. pressed on me the need to try and understand the problem as he drove me to the
airport in San Francisco. I was returning to London, a #ight of some 13 h then, long enough
for me to believe that I had solved the problem. The need for ultra-distributions was
because the vortex sheet was incorrectly modelled on linear theory on the assumption that
its displacement was always small. By the critical time identi"ed by Jones and Morgan, the
amplitude of the displacement had actually grown to in"nity. Certainly, something pretty
strange would be needed to represent an in"nitely big displacement in terms of
in"nitesimally small disturbances. That dismissive attitude led me to describe the solution
of the Green function for the incompressible vortex sheet in the way I did in my AIAA paper
[2]. The problem is de"ned in equations (39)}(41), and my solution stated in equation (42),
without proof. The displacement of the vortex sheet induced by the impulsive point source
was given in equation (44) of that paper, again without proof. Of course, I believed that
these results were accurate at the time of going to press. I found them very interesting, but
hardly anybody else has commented on them to my knowledge.

The more I learn about sounds of aerodynamic origin the more it seems that the
distinction between #ow and sound, and sound and sources, and sources and #ow, are
distinctions made on semantic grounds. It is obvious that unstable shear layers support
disturbances with many of the characteristics of the large eddies of turbulent layers. If one is
clever enough to model or observe the instability waves one also models aspects of the
eddies and the unsteady #ows adjacent to them, which evolve into sound proper as they
escape their source. I think of sound and disturbances that grow on shear layer instabilities
as being very much the same thing and hope that one day it will be possible to control both.
The technique of anti-sound where secondary waves are deliberately created to interfere
destructively with the primary noise might one day be applied to shear layers. Linear
control is obviously the simplest to consider and may well be the most useful. Peake and
Crighton have summarized this subject in the latest edition of the Annual Reviews of Fluid
Mechanics [3]. They refer to an experiment in which Dines devised a sound created with
a loudspeaker, that was out of phase with that emerging from a turbulent #ame and thereby
silenced it. The degree of cancellation depended on the accuracy with which the anti-sound
mimicked the original one. The same equipment applied to the sound of the Rijke tube
produced an altogether more dramatic e!ect. It silenced the Rijke tube by avoiding
instability; the basic #ow coupled with the controller was stable. Disturbances could not
grow, so there was nothing to hear. Peake and Crighton [3] give other examples of
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energetic #ows that are calmed by linear controllers, but all those systems are simple ones
with very few degrees of freedom.

Instabilities of the vortex sheet are at the heart of the processes that make jets noisy; they
may be amenable to active control. The simplest problem, that of the in"nite vortex sheet,
watched over by a controller that creates disturbances which cancel natural disturbances,
has been analyzed and published recently [4]. The two-dimensional inviscid #ow is the
simplest; it is unstable to all scales of disturbances which grow exponentially as they travel
downstream. Ffowcs Williams and MoK hring claim that their speci"ed controller has the
property of adding a disturbance that cancels a pre-existing instability, making the vortex
sheet/controller combination a stable one. Their analysis is not the easiest to follow, using
doubly complex analysis involving i and j, both square roots of !1, but not the same
square roots. During the development of that paper, it became clear that there was
a considerable similarity of the solution with that in my 1982 paper [2]. It is surely the same
solution, and equation (44) of reference [2] expresses the displacement of the sheet in
simpler terms. The impulsive source drives an impulsive response and induces also an
evolving #ow that appears to be driven by sources moving steadily in the image space on the
other side of the vortex sheet. It seems quite straightforward to see in principle how an
impulsive anti-source could be arranged and positioned to obliterate the image source
whose approach to the vortex sheet induces the unbounded response. It might be fun to see
what the vortex sheet displacement would look like after the application of the anti-source
and that was set as a problem for an undergraduate project some two years ago. Simon
Coles was the undergraduate that attempted the problem. He succeeded in illustrating the
manner in which the growing response was controlled, but his solution had the most
alarming property that the vortex sheet, when eventually calmed, took on a rest position in
which it was bent*a most unlikely thing. Surely, it is not possible for the vortex sheet to
support neutral waves, as this result would imply. Coles' conclusions were therefore that
either equation (44) of my paper was wrong, or there was indeed a neutral, indeed several
possible neutrally stable solutions to the Kelvin}Helmholtz problem, or three, there were
errors in his analysis which neither he nor his supervisor could "nd.

In honour of Philip Doak, I thought I would sort this problem out, and in what follows
I derive and present an expression for the Green function of the Kelvin}Helmholtz problem
in terms of functions used in the earlier paper. Unfortunately, it is not the solution given
before!

2. SOURCE-LIKE SOLUTIONS TO THE KELVIN}HELMHOLTZ PROBLEM

The inviscid #uid in y'0 is disturbed from rest by a potential

/`(x, t)"D/Dt (U(X,>)) (1)

and the #uid in y(0 is disturbed from its state of uniform velocity at speed ; in the
x direction by a potential

/~ (x, t)"L/Lt (U (X,>@)), (2)

D/Dt"L/Lt#;(L/Lx)

and

X"x!1
2
;t, >"y#d$1

2
;t, >@"y!dG1

2
;t, (3)
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where U(X,>) is a potential satisfying Laplace's equation in y'0 but with source-like
singularities in y(0. It has at most a logarithmic behavior when DyD or DxDPR. It is de"ned
to be an even function of >, i.e.,

U(X,>)"U(X,!>). (4)

Pressure continuity at y"0 requires

L/`/Lt"D/~/Dt , (5)

which can be demonstrated as follows:

L/`

Lt
"

L
Lt

D

Dt
U"!

;2

4 A
L2

LX2
!

L2

L>2BU (6)

because
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Lt
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;

2 A
L
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G
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L>BU(X, >),

DU
Dt

"

;

2 A
L

LX
$

L
L>BU(X, >). (7)

Similarly,

D/~

Dt
"

L
Lt

D

Dt
U(X, >@)"!

;2

4 A
L2

LX2
!

L2

L>@2BU(X,>@) (8)

because

L
Lt

U (X, >@)"!

;

2 A
LU

LX
$
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D

Dt
U(X, >@)"

;
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L

LX
G

L
L>@BU(X,>@). (9)

At y"0, >"!>@ and the symmetry of U about y"0 equates equations (6) and (8). The
second vortex sheet boundary condition, that the two sides of the sheet move together
requires that

D

Dt

L/`

Ly
"

L
Lt

L/~

Ly
at y"0. (10)

This is also the case for these "elds, as can be shown as:
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Again, the symmetry U about >"0 guarantees equations (11) and (12) are true at the
vortex sheet, y"0. All potential "elds satisfying the constraints of equations (1)}(4) are
solutions of the Kelvin}Helmholtz problem.

3. THE GREEN FUNCTION FOR THE KELVIN}HELMHOLTZ PROBLEM

We will now show that it is possible to satisfy all the constraints of the point-source-
driven linear vortex-sheet problem, with a function which is a superposition of four terms of
the type considered above, each of which satisfy the homogeneous problem. These
functions, based on the geometric terms, r, r

s
, h and h

s
, are de"ned as:

r2"(x!1
2
;t)2/d2#(y#d!1

2
;t)2/d2,

r2
s
"(x!1

2
;t)2/d2#(y#d#1

2
;t)2/d2,

h"tan~1 (y#d!1
2
;t)/(x!1

2
;t),

h
s
"tan~1 (y#d#1

2
;t)/(x!1

2
;t),

r
0
"x2/d2#(y#d)2/d2. (13)

The two-dimensional source "eld ln r and h, the "eld of a line vortex, are closely related
by what are essentially the Cauchy}Riemann equations for the complex representation,
conditions that are easily demonstrated by direct di!erentiation

L ln r/Lx"Lh/Ly and Lh/Lx"!L ln r/Ly . (14)

Above the vortex sheet, y'0, the potential is made up of a sum of elementary terms, the
strength of each term being set by the constants A, B, a and b, which we shall evaluate by
satisfying the boundary conditions

/`"d ln r
0
#H (D/Dt) MAh#Bh

s
#a ln r#b ln r

s
N. (15)

Below the sheet, y(0

/~"d ln r
0
#H(L/Lt) MAh@#Bh@

s
#a ln r@#b ln r@

s
N. (16)

H is written for the Heaviside function of t whose derivative is d. r
0

vanishes at the point
where the impulsive source "red, (0, !d), i.e., r

0
"rD

t/0
. The primed functions are
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constructed to have the symmetry properties assumed in equation (4) and are de"ned as:

r@2"(x!1
2
;t)2/d2#(!y#d!1

2
;t)2/d2,

r@2
s
"(x!1

2
;t)2/d2#(!y#d#1

2
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h@"tan~1 (d!y!1
2
;t)/(x!1

2
;t),

h@
s
"tan~1 (d!y#1

2
;t)/(x!1

2
;t). (17)

Each element of equation (15) satis"es Laplace's equation in y'0. / contains the
impulsive inhomogeneity, otherwise, Laplace's equation is satis"ed. The "eld is zero
everywhere prior to the action of the source at t"0, so it is causal.

The "rst boundary condition of pressure continuity at y"0, which is certainly satis"ed
in t'0 because of equations (6) and (8), must also be satis"ed through the instant t"0,
a requirement that L/`/Lt"D/~/Dt at y"0,
i.e.,

d@ ln r
0
#d

D

Dt
M N#H

L
Lt

D

Dt
M N"d@ (ln r

0
)#d;

L
Lx

ln r
0
#d

L
Lt

M N@#H
L
Lt

D

Dt
M N@ at y"0,

(18)

where M N and M N@ are written, respectively, for the two curly bracket terms in equations (15)
and (16).

The d@ terms are identical. The Heaviside terms equate because of equations (6) and (8),
leaving the d function multiplier which can be made to balance by setting values to A, B,
a and b. First, we note that

h"h
s
"h@"h@

s

and

r"r
s
"r@"r@

s
"r

0
at y"0, t"0 (19)

so that

d
L
Lt

M N"d
L
Lt

M N@ at y"0 (20)

The remaining terms in equation (18) then reduce to the condition

d;
L
Lx

M N"d;
L ln r

0
Lx

, (21)

i.e.,

Ah#Bh
s
#a ln r@#b ln r@

s
"ln r

0
at y"0, t"0. (22)

In view of equation (19), this equation requires that

A"!B and a#b"1. (23)
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Ensuring that both sides of the vortex sheet move together determines the second boundary
condition (10), so
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The d@ terms in equations (24) and (25) are identical, so are the Heaviside function terms,
by equations (11) and (12). The two equations balance when
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LxLy
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0
#d;
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LyLt
M N"d

L2

LyLt
M N@ on y"0. (26)

Because M N and M N@ are symmetric about y"0, their gradient is antisymmetric, making
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"

L
Ly

L
Lt

MAh#Bh
s
#a ln r#b ln r

s
N, (27)
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Equation (14) and its equivalent
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can be used to eliminate the h terms in equation (30) to make
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Similarly, using equations (14) and (31), h can be eliminated to give
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Equation (26) can now be simpli"ed by using equations (27), (32) and (33) to become
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i.e., given equation (19),
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L2 ln r

0
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"0 and (b!a)
L2 ln r

Ly2 K
y/0
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which, with equation (23), sets

A"1
2
, B"!1

2
, a"1

2
, b"1

2
. (36)

All the conditions required by the Green function are then satis"ed*apart from
a normalizing constant, which can be seen by noting that [5, p. 58]

$2/~"d$2 ln r
0
"2nd (x, y#d, t) (37)

larger by the factor 2n than what would be more naturally described as the Green function,
but that is largely a matter of semantics.

4. THE VORTEX-SHEET DISPLACEMENT

The boundary condition that the vortex sheet moves with the normal velocity of the #uid
equates

Lg
Lt

"

L/`

Ly K
y/0

. (38)

To integrate this into a description of the vortex-sheet displacement, it is convenient to
express the velocity as a di!erential of something with respect to time. We do this as follows.

First note that

D

Dt
(h#ln r)"

;

2 A
L
Lx

!

L
LyB (h#ln r) (39)

and, because of equation (14), it equals

"!;
L ln r

Ly
. (40)
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Similarly,
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Equations (39) and (41) produce the equation
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r and r
s
are de"ned in equation (13), from which it is apparent that
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$2 ln r"0, so equation (43) is equal to
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Similarly, the fact that
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Equations (44) and (46) allow equation (42) to be rewritten as
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which can be rewritten using equations (43) and (45) as
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Equation (38) can now be integrated trivially, because
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s
at y"0, t"0,
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This is the form that equation (44) of reference [2] should have taken.

5. THE STABILIZING ANTI-SOURCE

The Green function contains a term which is catastrophic at time 2d/;, when the residual
image source collides with the boundary. The catastrophe could be avoided by a negative
source applied after a time delay of q at the point x"1

2
;q and y"!d#1

2
;q. That

anti-source would generate a vortex sheet displacement given by the negative of equation
(52), with x replaced by x!1

2
;q, d replaced by (d!1

2
;q) and t replaced by t!q, i.e.,
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The singular terms are cancelled in the double-source response provided q(2d/;,
leaving a vortex sheet displacement for t'q of
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a "nite displacement that eventually settles down to g#g
a
"0.
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6. CONCLUSION

We have shown that it is indeed possible to introduce a source whose e!ect is to
neutralize the natural unstable response of a vortex sheet. Unfortunately, we also show that
the solution given in reference [2] is wrong.
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